An Extremal Problem on v-Partite Graphs

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The median problem on k-partite graphs

In a connected graph G, the status of a vertex is the sum of the distances of that vertex to each of the other vertices in G. The subgraph induced by the vertices of minimum (maximum) status in G is called the median (anti-median) of G. The median problem of graphs is closely related to the optimization problems involving the placement of network servers, the core of the entire networks. Bipart...

متن کامل

An Extremal Problem for Complete Bipartite Graphs

Define f(n, k) to be the largest integer q such that for every graph G of order n and size q, G contains every complete bipartite graph K u, ,, with a+h=n-k . We obtain (i) exact values for f(n, 0) and f(n, 1), (ii) upper and lower bounds for f(n, k) when ku2 is fixed and n is large, and (iii) an upper bound for f(n, lenl) .

متن کامل

An extremal problem for H-linked graphs

We introduce the notion of H-linked graphs, where H is a fixed multigraph with vertices w1; . . . ;wm. A graph G is H-linked if for every choice of vertices v1; . . . ; vm in G, there exists a subdivision of H in G such that vi is the branch vertex representing wi (for all i). This generalizes the notions of k -linked, k -connected, and k-ordered graphs. Given k and n 5k þ 6, we determine the l...

متن کامل

The Zarankiewicz problem in 3-partite graphs

Let F be a graph, k ≥ 2 be an integer, and write exχ≤k(n, F ) for the maximum number of edges in an n-vertex graph that is k-partite and has no subgraph isomorphic to F . The function exχ≤2(n, F ) has been studied by many researchers. Finding exχ≤2(n,Ks,t) is a special case of the Zarankiewicz problem. We prove an analogue of the Kövári-Sós-Turán Theorem by showing exχ≤3(n,Ks,t) ≤ ( 1 3 )1−1/s(...

متن کامل

An extremal problem on group connectivity of graphs

Let A be an Abelian group, n ≥ 3 be an integer, and ex(n, A) be the maximum integer such that every n-vertex simple graph with at most ex(n, A) edges is not A-connected. In this paper, we study ex(n, A) for |A| ≥ 3 and present lower and upper bounds for 3 ≤ |A| ≤ 4 and an upper bound for |A| ≥ 5. © 2012 Elsevier Ltd. All rights reserved.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: European Journal of Combinatorics

سال: 1983

ISSN: 0195-6698

DOI: 10.1016/s0195-6698(83)80020-1